Atrial-selective sodium channel block strategy to suppress atrial fibrillation: ranolazine versus propafenone.

نویسندگان

  • Alexander Burashnikov
  • Luiz Belardinelli
  • Charles Antzelevitch
چکیده

Ranolazine has been shown to produce atrial-selective depression of sodium channel-dependent parameters and suppress atrial fibrillation (AF) in a variety of experimental models. The present study contrasts the effects of ranolazine and those of a clinically used anti-AF class IC agent, propafenone. Electrophysiological and anti-AF effects of propafenone and ranolazine were compared at clinically relevant concentrations (i.e., 0.3-1.5 and 1-10 μM, respectively) in canine isolated coronary-perfused atrial and ventricular preparations. Transmembrane action potential and pseudo-ECG were recorded. Both ranolazine and propafenone produced atrial-selective prolongation of action potential duration. Propafenone depressed sodium channel-mediated parameters [maximum rate of rise of the action potential upstroke (V(max)), conduction time, and diastolic threshold of excitation] and induced postrepolarization refractoriness to a greater degree than ranolazine, and these effects, unlike those induced by ranolazine, were not or only mildly atrial-selective at normal rates (cycle length 500 ms). At fast pacing rates, however, the effects of propafenone on V(max) and conduction time became atrial-selective, because of the elimination of diastolic interval in atria, but not in ventricles. Propafenone (1.5 μM) and ranolazine (10.0 μM) were effective in preventing the initiation of persistent acetylcholine-mediated AF (6/7 and 9/11 atria, respectively), its termination (8/10 and 8/12 atria, respectively), and subsequent reinduction (8/8 and 7/8 atria, respectively). Thus, propafenone and ranolazine both suppress AF, but ranolazine, unlike propafenone, does it with minimal effects on ventricular myocardium, suggesting a reduced potential for promoting ventricular arrhythmias.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine.

BACKGROUND The development of selective atrial antiarrhythmic agents is a current strategy for suppression of atrial fibrillation (AF). METHODS AND RESULTS Whole-cell patch clamp techniques were used to evaluate inactivation of peak sodium channel current (I(Na)) in myocytes isolated from canine atria and ventricles. The electrophysiological effects of therapeutic concentrations of ranolazine...

متن کامل

Atrial-ventricular differences in rabbit cardiac voltage-gated Na+ currents: Basis for atrial-selective block by ranolazine

BACKGROUND Class 1 antiarrhythmic drugs are highly effective in restoring and maintaining sinus rhythm in atrial fibrillation patients but carry a risk of ventricular tachyarrhythmia. The antianginal agent ranolazine is a prototypic atrial-selective voltage-gated Na+ channel blocker but the mechanisms underlying its atrial-selective action remain unclear. OBJECTIVE The present study examined ...

متن کامل

Synergistic effect of the combination of ranolazine and dronedarone to suppress atrial fibrillation.

OBJECTIVES The aim of this study was to evaluate the effectiveness of a combination of dronedarone and ranolazine in suppression of atrial fibrillation (AF). BACKGROUND Safe and effective pharmacological management of AF remains one of the greatest unmet medical needs. METHODS The electrophysiological effects of dronedarone (10 μmol/l) and a relatively low concentration of ranolazine (5 μmo...

متن کامل

How Do Atrial-Selective Drugs Differ From Antiarrhythmic Drugs Currently Used in the Treatment of Atrial Fibrillation?

Current pharmacologic strategies for the management of atrial fibrillation (AF) include use of 1) sodium channel blockers, which are contraindicated in patients with coronary artery or structural heart disease because of their potent effect to slow conduction in the ventricles, 2) potassium channel blockers, which predispose to acquired long QT and Torsade de Pointes arrhythmias because of thei...

متن کامل

Mechanisms of atrial-selective block of Na⁺ channels by ranolazine: II. Insights from a mathematical model.

Block of Na(+) channel conductance by ranolazine displays marked atrial selectivity that is an order of magnitude higher that of other class I antiarrhythmic drugs. Here, we present a Markovian model of the Na(+) channel gating, which includes activation-inactivation coupling, aimed at elucidating the mechanisms underlying this potent atrial selectivity of ranolazine. The model incorporates exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 340 1  شماره 

صفحات  -

تاریخ انتشار 2012